滚齿机精切硬齿面齿轮的动态测试与有限元模态分析

滚齿机精切硬齿面齿轮的动态测试与有限元模态分析

刘明辉[1]2002年在《滚齿机精切硬齿面齿轮的动态测试与有限元模态分析》文中研究说明针对YB3180H滚齿机在大模数硬齿面齿轮加工中,振动较大、效率较低的实际情况,本文应用脉冲激振方法,对滚齿机进行了各阶模态分析,确定了机床振动的薄弱环节,并应用ANSYS软件建立了滚齿机机体叁维有限元模型,系统的分析了机体的各阶模态,通过与机体试验模态分析结果进行比较、修正并建立机体较精确的有限元模型。 本文同时对机体进行了实际约束条件下的模态分析,得到了机体在实际工况条件下的各阶模态、变形和应力。为在实际切削加工中,提高机床的工作稳定性,减少机床在硬齿面加工中的振动提供了理论根据。

刘明辉[2]2005年在《YB3180H滚齿机精切硬齿面齿轮的有限元模态分析与动态测试》文中研究表明针对YB3180H滚齿机在大模数硬齿面齿轮加工中振动较大、效率较低的实际情况,应用脉冲激振方法对滚齿机进行了六阶模态分析,确定了机床振动的薄弱环节。通过与机体试验模态分析结果进行比较、修正并建立机体较精确的叁维有限元(ANSYS)模型,可为机体的结构设计、结构改进、结构优化提供有力的理论依据。

王文龙, 刘明辉[3]2007年在《精切硬齿轮滚齿机有限元模态分析》文中研究指明对精切硬齿轮滚齿机YB3180H的机体进行了实际约束条件下的模态分析,得到了滚齿机在实际工作情况下的变形和应力。为在实际切削加工中,提高机床的工作稳定性,减少机床在硬齿面加工中的振动提供了理论根据。

王文龙, 刘明辉[4]2007年在《精切硬齿面齿轮滚齿机有限元建模的研究》文中研究说明通过对YB3180H型滚齿机数学模型的分析,利用ANSYS软件的4种实体形式结合滚齿机的结构特点建立了有限元叁维模型。可为YB3180H型滚齿机的理论研究和现场测试提供理论依据,对滚齿机的振动以及应力分析等具有重要的实际意义。

黄强[5]2008年在《零传动滚齿机精度控制及颤振抑制技术研究》文中指出“零传动”又称直接驱动,即取消动力源与最终执行部件之间的所有机械传动环节。机床中常用的零传动功能部件有电主轴、直线电机和力矩电机等。零传动技术为提高机床性能提供了诸多好处:最大限度地减小了传动误差、为高速加工提供了可能、提高了机床执行部件的运动灵敏性等。目前,国外的先进滚齿机已大量采用了该项技术并取得了很好的成效,但其设计原理和技术均严格保密。为打破这种技术垄断局面,笔者所在课题组与国内某机床厂合作研发了一台基于零传动功能部件的数控滚齿机原型,并对相关理论和技术进行了比较系统的研究,其研究成果为提高我国齿轮加工机床的设计和制造水平打下基础。将零传动技术应用于滚齿机,不是单一针对零传动功能部件设计和制造技术的研究,也不是简单地将零传动功能部件置换进机床的工程处理过程,而是需要解决一系列从整体到局部的设计关键理论和技术问题。在这些问题中,既有滚齿机独有的问题,也有常规机床的共性问题。本文主要围绕零传动滚齿机精度控制理论和技术展开,并对机床的抗颤振结构优化问题进行了比较深入的探索。(1)对影响普通数控滚齿机展成运动精度的主要因素及其作用规律进行了分析,发现其展成运动误差仍然主要来自于机械传动环节,所以在原机床框架下进一步提高机床展成运动精度的空间不大;在此基础上,分析了零传动对提高展成运动精度的作用机理,研究结果表明:应用零传动技术在解决这一问题上具有先天的优势。因此,零传动滚齿机的精度控制重点,应当是机床两主轴之间的位姿精度和主轴部件的抗扰动能力。(2)实现机床精度的合理控制,建立一个有效的机床误差模型是必要的。根据滚齿机的结构和运动特点,机床的误差建模采用多体系统理论与齿轮啮合原理相结合的方法。该模型量化地描述了滚齿机各个组成部分之间的位姿和运动关系,尤其反映了各误差源对位姿、运动的作用规律和各误差源之间的关系,是机床精度控制工作的理论基础。(3)将加工误差敏感方向与机床误差源的传递规律相结合,提出了“机床敏感误差”(机床中对最终加工精度影响程度高的源误差)的概念,由此衍生出“敏感设计参数”和“误差敏感度”概念;以“抓主要矛盾”的思想,确定了针对机床敏感误差的机床精度控制策略。为实施机床的误差敏感度分析,以重构的方式将机床的理论误差模型简化为拥有两个子模型的工程误差模型,合理地将中间部件的位姿误差、运动误差参量与复杂的滚齿空间啮合关系分开,大大提高了模型的可操作性和使用的灵活性,同时使分析结果更具针对性。文中详细介绍了两个子模型的建立和使用方法,示例展示了其可行性和使用效果。(4)在分析综合国内外相关研究状况的基础上,以机床抗颤振结构优化为目的,对再生型切削颤振模型进行了系统的研究。根据研究结果,将机床加工系统简化为只具有两个弹性体的单自由度再生颤振模型,该模型能提高机床抗颤振结构优化的效率。基于此模型,一个“只对机床薄弱部件进行结构优化”的新构思被提出,并讨论了优化目标参数、数学模型和优化算法。试验研究结果展示了切削颤振产生和发展的过程和特征,同时验证了本文理论分析的正确性。以YK3610滚齿机样机的滚刀主轴系统为对象,对抗颤振结构优化的效果进行了模拟试验,取得了令人满意的结果。(5)介绍了YK3610样机的初步评估试验,试验数据反映了样机的主要性能,也揭示样机存在的一些问题,为该机床的调整和改进提供了第一手资料。

参考文献:

[1]. 滚齿机精切硬齿面齿轮的动态测试与有限元模态分析[D]. 刘明辉. 辽宁工程技术大学. 2002

[2]. YB3180H滚齿机精切硬齿面齿轮的有限元模态分析与动态测试[J]. 刘明辉. 制造技术与机床. 2005

[3]. 精切硬齿轮滚齿机有限元模态分析[J]. 王文龙, 刘明辉. 煤矿机械. 2007

[4]. 精切硬齿面齿轮滚齿机有限元建模的研究[J]. 王文龙, 刘明辉. 煤矿机械. 2007

[5]. 零传动滚齿机精度控制及颤振抑制技术研究[D]. 黄强. 重庆大学. 2008

标签:;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

滚齿机精切硬齿面齿轮的动态测试与有限元模态分析
下载Doc文档

猜你喜欢