混凝土技术发展中值得注意的几个问题论文_马佳侠,郑向萌

混凝土技术发展中值得注意的几个问题论文_马佳侠,郑向萌

国网湖北送变电工程有限公司 湖北省 430063

摘要:近年来,随着大型基础设施与现代工程结构的快速发展,混凝土技术所面临问题主要体现为上述胶凝材料与功能外加剂两个方面。基于此,本文将围绕重大工程需求,重点介绍混凝土技术在胶凝材料与功能外加剂方向的新进展,分析上述技术所面临问题,并对未来研究工作进行展望。

关键词:混凝土技术;发展;注意问题

1胶凝材料

1.1传统硅酸盐水泥

硅酸盐水泥的快速发展亟需重视收缩开裂与适应性问题。从英国工程师JosephAspdin获得授权专利起,硅酸盐水泥及其混凝土在不到200年的发展历程中已成为全世界用量最大的基础材料。随着水泥行业的科技进步,硅酸盐水泥的生产工艺与各方面性能指标得到了显著的提升。近年来,我国新的水泥烧成工艺通过高固气比悬浮预热预分解技术,使得水泥产量增加40%以上,废气中的SO2和NOX排放降低50%以上,同时能耗显著降低。除了烧成工艺的进步,硅酸盐水泥的粉磨技术也得到快速发展,水泥细度和比表面积也在不断增加,大幅提高了水泥强度。尽管如此,现有研究表明,随着水泥细度的增加,水泥快速水化的集中放热,将加剧混凝土早期收缩,增大温度开裂风险。其中,当水泥比表面积由280m2/kg增加至380m2/kg,其开裂温度增加9.5℃,开裂时间提前约1倍。其次,水泥熟料矿物中C3S含量超过55%,呈现上升趋势。一方面,高C3S含量有效提高混凝土的早期强度;另一方面,随着C3S含量的提高,水泥水化放热量集中,极大增加了水泥混凝土的早期开裂风险。最后,随着水泥行业低碳绿色化的发展需要,越来越多的工业废渣作为混合材被掺入硅酸盐水泥中,提升水泥基材料性能。然而,近年来优质原材料的匮乏,导致低品质或低活性混合材,如煤矸石、炉底渣等的大量不合理使用,从而影响水泥混凝土的工作性能与力学性能。同样地,大量工业副产物石膏,如脱硫石膏、磷石膏和氟石膏,由于其溶解速度的差异,会导致水泥凝结时间异常,与高效减水剂相容性变差。针对上述问题,硅酸盐水泥的未来的发展方向在于水泥熟料矿物组成的设计与优化。在水泥材料设计方面,未来应重点借助于计算机模拟方法研究水泥水化机理,优化水泥组分和性能。另一方面,积极开展具有低水化热特性的高贝利特水泥研究与应用,从而在减少混凝土开裂的同时,大幅度降低硅酸盐水泥生产能耗。

1.2新型胶凝材料

煅烧粘土-石灰石复合胶凝材料(LC3)是绿色低碳硅酸盐水泥的研究前沿。煅烧粘土类矿物相比于粉煤灰与磨细矿渣具有更高的火山灰活性,在部分取代硅酸盐水泥时并不会影响水泥基材料的早期力学性能。同时煅烧粘土矿物的原材料高岭土储量丰富,生产烧制工艺与硅酸盐水泥相似,可采用水泥生产设备生产,并且煅烧温度低,煅烧过程中不会释放温室气体CO2,具有诸多优势。瑞士洛桑联邦理工学院Scrivener教授最新提出了煅烧粘土与石灰石复合胶凝材料体系(Limestonecalcinedclaycement,简称LC3)。在该体系中,煅烧粘土与石灰石在碱性环境下反应生成了水化产物水化碳铝酸钙,在两者总掺量达到45%时,水泥基材料的力学性能与抗渗性能依然优于普通硅酸盐水泥体系。同时,煅烧粘土与石灰石的复合掺加能节约更多的硅酸盐水泥熟料,进一步降低水泥生产过程中的碳排放量,因而被视为一种极具应用前景的新型低碳水泥体系。研究表明,使用煅烧粘土与石灰石能显著优化水泥基材料的孔径结构,降低孔隙率,从而有效抑制有害介质的扩散侵入,提高混凝土抵抗氯离子侵蚀的能力。在同等条件下,煅烧粘土与石灰石复合胶凝体系的氯离子扩散系数较普通硅酸盐水泥降低80%。

期刊文章分类查询,尽在期刊图书馆尽管如此,煅烧粘土与石灰石复合胶凝体系在应用与推广过程中仍存在一些问题亟需解决。首先,其主要原料粘土(高岭土)来源广泛,地区差异性较大,因此不同地区的水泥煅烧工艺、使用方法、颜色、性能都会存在较大差异。其次,由于原材料的粒径分布和化学吸附作用,煅烧粘土与石灰石复合胶凝体系的混凝土工作性较普通硅酸盐水泥混凝土略差,且缺少与之完全匹配的化学外加剂。

2功能外加剂

2.1高性能减水剂

减水剂是一种能够维持混凝土坍落度条件下减少拌合用水量的混凝土外加剂。减水剂的发展经历了三代,从木质素磺酸盐到缩聚型聚合物高效减水剂(萘系和三聚氰胺系),再到聚羧酸系高性能减水剂,其减水能力不断提高,使得混凝土工作性由最初的干硬性、塑性进入到当前的高流动性时代,推动混凝土向高性能化发展。作为第三代高性能混凝土减水剂,聚羧酸外加剂具有掺量低、减水率高、保坍性能好、混凝土收缩率低、分子结构可调性强、生产工艺清洁等优点,是提高混凝土工程质量的关键,已成为制造高性能现代混凝土的必备材料和核心技术,目前已在高铁、桥梁、核电及市政民用等工程中得到了广泛应用,占减水剂总用量的50%以上。

聚羧酸减水剂采用梳型结构,主链含有带负电性的官能团(羧酸基、磺酸基、膦酸基等),接枝水溶性的长聚乙二醇侧链,在混凝土中,主链通过静电相互作用或Ca2+络合吸附于胶凝材料颗粒表面,长侧链通过空间位阻产生分散作用,阻止絮凝结构形成。目前对于其构效关系及作用机制的研究较为清晰,其分散能力取决于附着于粉体表面的聚合物吸附层厚度,由吸附量和吸附构象决定。

2.2水化热调控材料

温度收缩开裂是混凝土主要的开裂形式之一,在地下侧墙及大体积混凝土结构中尤为突出。温度收缩开裂主要是混凝土结构不同部位温差形成的温度应力,以及外部约束条件下,温降过程产生的温降收缩应力造成。因此要抑制温度开裂,就需要控制混凝土结构不同部位温差及内部温升。在收缩变形方面,除了传统降低水泥用量,使用中、低热水泥,预埋冷却水管等方式,近年出现了一种新技术,通过掺加新型化学外加剂(水化热调控材料,TRI)来控制混凝土结构温升;该技术主要原理是,通过降低水泥早期水化速率,避免早期水化放热过于集中,结合一定的散热条件,达到降低混凝土结构温升、温降收缩,进而降低温度开裂风险。与传统缓凝剂主要影响凝结时间不同,TRI主要通过降低水泥加速期的水化速率,减少混凝土早期放热量,推迟温峰出现时间,减少了热量的累积,最终降低混凝土温升,进而减少温度裂缝的形成。

TRI对混凝土结构温升及温降收缩变形影响的结果表

明:保温条件下400mm立方体小构件温升约30℃;掺加TRI后,小构件中心温升由基准的约30℃降至约18℃,降温12℃左右,且10d内降温阶段收缩变形减少了约140μm/m。因此,TRI能有效地降低结构温升,抑制混凝土温降收缩。由于通过掺加TRI来降低混凝土结构温升及减少开裂具有易操作,效果优良,可调性高的优点,目前已在工程中得到成功的推广应用。

结束语

(1)胶凝材料是混凝土的基本组成,包括硅酸盐水泥、新型胶凝材料与矿物外加剂。收缩开裂、水化行为与机理是胶凝材料的关键问题,建议未来重点开展绿色化、高性能化硅酸盐水泥的研究,同时探讨数值模拟技术指导生产实践的可行性;积极鼓励新型胶凝材料的快速发展,结合材料特性侧重功能特征。

(2)新拌性能与收缩变形是现阶段实现混凝土高性能化的首要问题,未来应大力引导混凝土功能材料的原创性研究,侧重分子构效设计,解决低水胶比混凝土粘度大、脆性大与韧性差、结构温升及温降收缩变形大的难题。

参考文献

[1]纪锋,何兵.浅述再生混凝土技术在建筑工程中的发展与应用前景[J].门窗,2017(12):75.

[2]陆正明.研究外加剂对混凝土技术发展的影响[J].科技风,2017(24):100.

[3]殷浩轩.高性能混凝土技术的发展研究[J].现代经济信息,2017(21):311.

[4]马涛,李小伟.高性能混凝土技术发展与应用初探[J].民营科技,2017(01):140.

论文作者:马佳侠,郑向萌

论文发表刊物:《建筑学研究前沿》2018年第17期

论文发表时间:2018/11/5

标签:;  ;  ;  ;  ;  ;  ;  ;  

混凝土技术发展中值得注意的几个问题论文_马佳侠,郑向萌
下载Doc文档

猜你喜欢