谈电气工程自动化控制中智能化技术的运用论文_李星源

谈电气工程自动化控制中智能化技术的运用论文_李星源

云南经济管理学院 云南昆明 650106

摘要:现如今,随着我国经济水平的快速发展,我国现在已经迈进了电气行业快速发展的时代,一些比较重要的电气工程建设相继开展,可以从中看出电气工程自动化控制在当下的地位以及发挥出来的重要作用。但是在传统的电气工程自动化控制中往往存在着很多的不足,比如说工作效率的低下并不能长期地支撑电气工程自动化控制的发展。这就需要对电气工程自动化控制中所应用的技术进行不断地改进和创新,于是智能化技术便应运而生并且得到了很大程度的重视,将其应用在电气工程自动化控制中实现了人工智能化的管理,促进了电气工程自动化控制的发展。

关键词:电气工程;自动化控制;智能化技术;运用

引言

由于电气工程行业在自动化方向的发展,我国电力工程行业的发展得到了极大的促进。而随着科学技术的不断发展,电力设备的种类越来越多越来越完善,功能也更加强大,人们的用电需求逐渐提升,同时对智能的电力工程自动化管理与控制也有更高的期待。我国电力工程自动化中对智能技术的应用水平正不断的提升,这就需要我们明确智能化技术的优势,从而不断创新电力工程的自动化控制手段。通过将智能化技术应用到电力工程自动化中,不仅可以推动我国电力企业的发展,同时也能为社会提供更为先进的智能化服务,智能化技术在电力工程自动化控制中的应用是也是未来电力工程行业研究工作的主要方向。

1智能化技术基本概述

在智能化技术当中会涉及到许多内容,比如,控制学、信息学以及生物学等,其综合性较强。智能化技术的研究主要是应用于机器当中,促使机器能够拥有人工只能,同时能够通过自身独立完成某项工作的性能。为保证智能化技术得到更好应用,需要将先进计算机技术应用在其中。如今智能化技术已经成为电气工程自动化控制研究中的重点内容,其中包括电子电气技术、信息收集技术、信息处理技术等。将智能化技术应用在电气工程自动化控制,可以保证智能化技术具有较强的实用性以及可操作性等。从大量的工作中可以表明,智能化技术的应用为电气工程自动化控制带来许多便利,不仅能够提升工作质量,工作效率同样可以保障。减轻相关工作人员的工作负担,保证各项工作的顺利进行。

2智能化技术在电气工程自动化控制中应用的重要意义

2.1简化电气工程自动化控制需求

在传统电气工程自动化控制过程中,控制模型虽然是一项非常基础的工作但是由于受到科学技术水平的限制导致该工作的开展不顺利,比如说一旦遇见一些较为复杂和繁琐的问题那么控制模型将会失控,这限制了电气工程自动化控制的发展。但是人工智能化技术的出现很好地解决了这一问题,应用智能化技术之后可以从根本上提高控制模型的性能,进一步简化电气工程自动化的控制需求。

2.2提升控制性能

在当前应用智能化技术背景下可看出,智能化的自动操控不仅能有效控制调节,还能针对下降时间以及响应时间等进行有效控制,从而有效提升无人操控的准确性,确保电气工程发展能够符合当前社会发展需求。与此同时,还需要针对智能化技术在电气工程自动化控制中的应用加大重视,有效实现智能化的自动操控,进而提升抗风险能力。

2.3强化电气工程自动化控制的统一性

在传统的电气工程自动化控制过程中,控制器往往只能控制较少的模型,一旦模型过多,将会严重降低其性能,使工作效率下降,但是智能化技术很好地提高了这一方面的性能,它使得控制器的应用范围大大扩大,并且对数据的处理时间也变得越来越少,哪怕是出现了控制器未曾识别过的数据也可以最大程度上降低控制工程的风险。

3智能化技术在电气工程自动化控制中的主要应用

3.1智能化控制方面的应用

随着我国信息技术的飞速发展,促使多样化类型的系统出现,在一定层次上加大了相关数据的复杂性特点,从而给电气工程自动化控制发展带来了严重影响。要想有效解决这一问题,就需要相关人员能够把智能化技术应用在电气工程自动化控制中,只是需要针对开展电气工程自动化控制发布相关指令就可以,促使整个工作内容简单化。或者,还可以运用人工智能芯片进行收集相关指令,然后在借助于人工智能芯片有效结合工作环境等,以此来确保电气系统能够稳定的进行运转。

3.2数据采集和信息处理

数据采集,简而言之就是指预先准备程序,通过系统来进行指令,控制电气工作,保证设备安全运行和加强同周边环境数据的交互。虽然电气系统网络复杂度较高,但是通过引入智能控制系统,相关信号、数据均会被采集和捕获,大大提升了数据的准确信与稳定性,减少工作量并优化了工作效率。在数据收集与捕获之后,智能控制系统会自动进行分析与研究,通过与历史数据比对和相应参数的分析,不断提升了数据处理的精度与广度,保证电气工程自动化的进展。

3.3神经网络系统的应用

在电气自动化系统中应用的最佳智能化技术是神经网络系统。因为分工不同、所借用的动态参数也不相同,所以可以将神经网络系统分成两个子系统,一个子系统是根据电气系统的动态参数来辨别电流;另一个子系统是通过设备机电的数据参数来辨别自传速度。首先,此系统使用反向转波方法进行计算,这是因为神经网络系统具有前馈性的结构特征,在对交流电机与驱动系统进行诊断作业时,反向转波的计算方法十分明显,而且它可以缩短梯形控制定位所需时间,同时反向转波计算方式可以对非初始速度变化及负载转矩进行有效控制。另外,在神经网络系统中存有函数估计器,此种估计器在一定程度上能够抵抗噪声所带来的影响,又因其具有一致性特征,所以可以提升信号处理效率、控制好电气的传动、改良识别模式。除此之外,此系统结构中包含多种并行输入传感器,即使在条件约束下,也能够对提升其监控角色的可靠性及安全性,同时能够确保诊断系统有效的运行。在使用神经网络系统时,要运用反向传播技术全面测试隐藏的节点、隐藏层与激励函数,以此实现资源优化配置。

期刊文章分类查询,尽在期刊图书馆与此同时,为了提升电气自动化控制系统中神经网络系统的运行效率,会应用反向传播来对网络权重进行优化,从而确保神经网络系统能够安全、可靠的运行。

3.4专家系统在电气工程自动化控制中的技术应用

专家系统在电气工程自动化控制中的技术应用范围较广,可应用技术类型较多。例如,电力系统规划方面的专家系统技术应用。电力规划是电气工程自动化控制中的重要分支,是为满足电气工程自动化控制扩容需求。电力规划涉及的技术内容复杂且涉猎面广泛。在电源、输电网络以及城市地区网络等方面采用专家控制系统,满足了电气工程自动化控制要求。具体应用中,包括了专家控制系统对电气工程网络自动化规划中的多目标函数控制,基于控制矛盾筛选约束条件,并将它们应用于复杂系统中产生相互作用,实现基于技术角度方案的设计权衡与最优化方案的提出,最后协调最终决策过程。对于电气工程的选址与布局方面,可利用专家控制系统对地方的核电配合、火电配合以及水电配合进行全面分析,同时为电气工程建设技术人员模拟培训系统,对工程中的所有技术方案进行模拟教育,鼓励技术人员实施提前商讨,尽可能预判电气工程自动化控制可能存在的技术问题,减少破坏性项目施工试验,提高工程项目整体质量和效率。

3.5在电气工程设计优化中的应用

在传统电气工程优化过程中,需要相应的专业设计师对系统等进行优化,同时还需要进行反复的实验,这样才能保证设计的完善性,并且再将其投入到使用中后,能够确保各项工作安全稳定进行。在这一过程中不仅会浪费许多时间,而且采用人工设计的方式,如果在设计过程中造成某个细节的忽视,那么很容易对整个电气工程自动化控制系统的最终性能与运行造成影响。如果问题较为严重,无法在最短时间内对其进行调整,那么将会对相关企业造成严重的经济损失。所以,为保证电气工程自动化控制系统设计的科学性与合理性,需要将智能化技术应用在其中。同时,需要参与设计的工作人员自身能够具备较强的工作能力与工作素养,同时需要具备较强的责任心,这样才能认真严谨对待各环节工作。在设计过程中需要将智能化技术应用在其中,通俗来讲需要将先进计算机技术进行充分利用。利用计算机系统软件等,对电气工程自动化控制系统设计进行全方位监控,如果在其中存在问题,那么计算机将会做出反应,这样可以在第一时间内发现问题所在,相关设计工作人员可以做出调整,保证系统设计能够在未来电气工程当中得到更好应用。

3.6故障诊断方面的应用

在电气工程自动化控制中应用智能化技术,不仅能提升自动化的控制水平,还能有效解决在控制过程当中存有的问题和难点。智能化技术可以在电气装置发生故障问题的时候及时进行诊断,因为电气装置在使用的过程当中难免会发生一些故障问题,那么一旦故障发生,对于电气设备检修来说是属于一项非常复杂且困难的问题,有些故障很难在实际运行当中进行发现和判断,不仅针对人力是属于一项浪费,更是确保不了最终检测是否具有准确性。但是若是在电气工程自动化控制中运用智能化技术,就可以有效针对故障问题进行自动化诊断,假设电气设备在控制的过程当中出现了故障,那么就可以借助于智能化控制器针对其中的故障问题开始自动化诊断,然后把相关故障数据通过系统的方式传输给监控人员,在由专业的维修人员针对故障问题进行处理。

3.7PLC技术的应用

PLC技术一般应用于自动化控制的辅助系统之中,它能够控制电气工程的整体工艺流程,有助于相关企业的经营发展。比如:在电力行业输煤系统中,整体工艺是由上煤、储煤、配煤以及辅助系统结合而成。PLC技术与人际接口一同构成了输煤系统主站层,能够自动对辅助系统的运行状况进行控制,同时与人工操作进行结合,能够大大的提升输煤工作效率。另外,输煤系统中的PLC技术可以使传感器和远程工作站之间进行有效的交流,实现远程操控,减少工作人员的工作负担,提升系统运行效率及质量。除此之外,传统实物原件会被替换成含有PLC技术的软继电器,有效实现系统的自动闭合,以此确保系统整体能够安全运行,并具有较高的运行效率及质量。

3.8模糊控制推理技术在电气工程自动化控制中的技术应用

模糊控制推理技术拥有一套模糊逻辑系统,包括模糊产生器、模糊规则库及模糊推理机等。实际应用中,模糊控制推理技术通过引荐专家知识和发掘数据库知识点来全面总结电气工程自动化控制情况,专门设计电气工程项目的模糊事实表达,并结合模糊量总结计算结果。分析电气工程项目设计的模糊事实表达可知,设计模糊事实表达可解决电气工程自动化控制应用经常遇到的数据精确运算问题。对工程自动化控制产生的相关事实全部进行模糊控制,完成模拟设计推理过程。该模拟设计推理过程需结合电气工程短路电力计算与保护整定形式来实现对项目计算结果准确性的有效提升,并尝试搭配不同类型的模糊语言来实现对目标的有效描述。保护系统方案设计中,可利用模糊词汇作为自动化控制元素与电气工程项目内容相结合,基于模拟集全面覆盖项目取值区间。模拟控制会基于项目参量选取合理数值,其中涵盖了多个目标元素,如对电气工程发电机容量的计算评估或者对机组运行元素的有效控制与量化处理等。基于上述内容配合模糊语言,可形成模糊事实,提高了电气工程自动化控制的计算机信度,优化了电气设备的使用效果。此外,模糊控制系统能有效优化电气工程自动化控制进程中设备电流电压的直流和交流的传动过程,从而有效控制系统细节。例如,若是在以直流传动为主的电气工程自动化控制过程中,会采用Mamdani和Sugeno人工智能模糊逻辑控制模块。其中,Mamdani模块负责对电气系统运转速度进行有效调节;Sugeno模块负责为Mamdani模块提供特殊辅助,加强对电气工程的自动化控制效果。若是在以交流传动为主的电气工程自动化控制过程中,则继续利用人工智能理论中的模糊控制器取代传统电气高速控制器,实现对电气工程自动化控制的有效优化。

结束语

通过本文探究,认识到在电气工程自动化控制中,灵活运用智能化技术不止能实现自动化电气控制的目标,大大提高自动化控制系统的运行安全性及运行效率。由此可见,需认清现状问题,合理科学地应用智能化技术,使电气工程自动化控制的作业效率提升,从而推动我国电气工程的发展进程,进一步为我国经济进步提供强有力的支持。

参考文献

[1]于剑.初探智能化技术在电气工程自动化控制中的应用[J].科技风,2018,(33):99.

[2]翟鑫羽.初探智能化技术在电气工程自动化控制中的应用[J].百科论坛电子杂志,2018,(11):342.

[3]管九皓.初探智能化技术在电气工程自动化控制中的应用[J].数码设计(上),2018,(5):71.

论文作者:李星源

论文发表刊物:《建筑学研究前沿》2019年9期

论文发表时间:2019/8/23

标签:;  ;  ;  ;  ;  ;  ;  ;  

谈电气工程自动化控制中智能化技术的运用论文_李星源
下载Doc文档

猜你喜欢