摘要:现如今,在电力系统高速发展的形势之下,人们对于这方面的要求也在逐步的提升之中。因此,为了可以在最大限度之上来充分的实现之后人们对于电力系统自动化控制之中的实际需求,就得要进一步的强化智能技术应用的范围与力度,这也很好的顺应了时代发展的潮流。该项技术的运用可以很好的进行智能发电与智能调度,在具体运用的时候,线性最优控制理论、专家系统控制、模糊控制理论、智能发电以及神经网络控制系统均可以得到高效的运用。从而促进电力系统走向故障智能诊断、全方位控制与综合智能控制的道路。
关键词:电力系统;自动化控制;智能技术
引言
当前电力对于社会的发展具有十分重要的促进作用,电力系统中的自动化技术也逐渐成熟,为了进一步提高电力系统运行的稳定性,就要将智能技术有效的运用于电力系统的自动化过程中。智能技术的有效运用能够极大的提高电力系统的运行效率,进而提高电力企业的经济效益,从而促进电力企业竞争力的不断提高。为了确保智能技术能够与电力系统自动化相适应,就要对二者进行系统全面的分析,优选出最适宜的智能技术,从而确保两者之间能够进行完美的融合。
1智能技术的概念
智能技术,其具备着学习、适应与组织作用,运用智能技术可以很好的将产品方面的问题及时的予以解决。电力系统较为传统的控制方式在具体应用的过程之中有着诸多方面的不足,运用智能技术可以针对无法根除自适应控制与鲁棒性控制问题无法解决等等方面优势十分的显著。该项技术目前已经得到了大范围的运用。智能技术涉及诸多方面的内容,一般情况之下,主要是专家系统、模糊控制与神经网络系统,在电力系统自动化控制之中运用这些技术,所取得的作用不容忽视,可以充分达到各项实际需求,这对于智能电网的构建而言十分的有意义。
2电力系统自动化中智能技术的应用
2.1线性最优控制的应用
在电力远距离传输的过程中,通过将最优励磁控制有效的运用其中,进而提高发电机对电压的控制能力,确保整个电力系统的平稳运行,其中,最优励磁控制是建立在线性控制的基础之上。线性控制是指在电力系统的运行过程中,将发电机的电压与已知电压值进行比较分析,并根据PID算法精确的计算出电压偏差,进而对电压进行有效的控制。通过线性原则,能够实现最优励磁对控制器和电压科学合理的控制,进而对局部控制模型所受到的线性化约束进行有效的改善。
2.2模糊理论
运用逻辑推理理论和语言变量,确保电力设备和电力系统可以实现模拟练习的目标,这种现象也就是我们所说的模糊理论。在电力自动化控制之中充分的运用模糊逻辑,可以确保电力系统自身具备一个相对完善与系统性的逻辑推理能力,并运用该类推理方法,来将人类的各项决策实施模拟,并运用电力自动化系统可以发送指令,进入达到操作的目的。在这种形式下,技术数据可以严格的依照相应的准则来实施,有效的控制逻辑的进程,也就说运用逻辑推理与模糊理论,可以实时模拟人的各项决策,对于电力自动化实施前期模糊输入与推理,确保电力自动化系统来达成决策的目的。
2.3故障诊断
通常情况下,故障诊断主要涵盖了3个步骤,即检测设备状态特征信号;在所检测的信号当中提取征兆;根据征兆及其他诊断信息对设备状态进行识别。从故障诊断诊断发展趋势来看,将专家系统方法与故障诊断技术进行结合是未来设备故障诊断的重要发展趋势。通常情况下,为了对设备故障进行诊断及维修,需要对设备工作情况进行测试及监控。
期刊文章分类查询,尽在期刊图书馆为了能够准确获得设备运动状态信息及位置情况,在设备当中会置入一些功能执行部件,并安装传感器,反映出温度、压力、功耗等信息。部分设备控制器数据当中还涵盖了各种指示运动状态信号、控制器I/O信号等。设备一旦出现故障,可通过对控制器内各类信号及信号间的逻辑关系进行分析,便可获得具体故障部件及位置信息。设备故障诊断专家系统是借助各类诊断知识对数据库监测到的信息进行分析、整合、处理,并对设备运行状态进行判断及推理的软件系统。当设备运行出现异常时,设备故障诊断专家系统能够对相关信息进行智能化判断、分析,获得故障具体原因,并反馈故障诊断、推理过程解释及故障处理结果。
2.4专家系统
专家系统实质上就是计算机程序系统,在其内部可以预先设定人类专家处理问题与具体的解决措施来实现知识与经验的储存,换言之,专家系统是一个具备诸多专门知识和经验的程序系统,人工智能技术的合理运用,可以针对其中某一环节或者是多个人类可以解决的问题,针对其中一个领域,来实施相应的推理与判断,在应用专家控制系统的过程之中,那么相应的可以在出现紧急故障的现象或发出警告的时候,及时的针对所出现的具体部位与故障来实施预测与解决,这样一来,就可以充分的确保电力系统的安全、可靠的运行。
2.5神经网络控制的应用
通过将神经网络有针对性的应用于电力系统中,能够提高电力系统的智能化程度,进而对整个电力系统进行全面的调控。神经网络控制是一项先进技术,是建立在非线性原则的基础之上,并对非线性原则进行合理的优化,进而对电力系统的运行控制数据和计算机数据库进行有效的控制。神经网络是将数学系统、人工智能系统和网络系统进行紧密的结合,进而对系统的能源消耗、计算消耗量以及能源消耗结构进行系统性的分析,从而有效提升电力系统对能源的调控能力。同时,对神经组织结构和规划模型进行合理的分析之后,能够有效提高网络的硬件水平,促进了我国电力行业经济效益的不断提升。
2.6智能技术扩充控制系统
PLC(可编程控制器)是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。在一些大型企业中广泛用于替代以前的继电控制器,直接对生产的系统中的每一个步骤进行控制,保证各个步骤有条不紊的进行。主要分为两个部分:(1)主区,由人工和PLC组成,依靠人随时调节可控程序来及时发现和处理不可预估的问题。(2)分站,即为实施端,对于每一道工序有严格的进行把关,保证每一步的操作严格按照主区的控制进行,实时反馈,双向控制。因此,可编程控制器的应用取代了以前的继电器,提高了生产效率,也减小了员工的工作负担,同时提高了电子控制系统的稳定性和可靠性。
结语
从上面所述的来看,未来社会的发展将增加一股不可或缺的力量,智能技术的不断提升,综合其自动数字化的特征与优势,将在自动化控制中广泛被使用。智能技术同时也提高了我们实际生产的效率,减少了繁琐的人工操作,同时也加强了智能技术对于系统和整个生产流程的控制力度,有效的解决了当今社会的时效问题,生产中及时发现问题和解决问题,提高了故障修复的速度,完善了产品设计生产的体系,进一步促进了电子工程行业的高速发展。
参考文献:
[1]王乐.人工智能在电气自动化控制中的应用研究[J].自动化与仪器仪表,2015(1):113-116.
[2]任博.人工智能技术在电气自动化控制中的应用思路分析[J].科技视界,2015(9):108-109.
[3]姜关胜.人工智能技术在电气自动化控制中的应用问题探讨[J].电子技术与软件工程,2015(20):150.
论文作者:刘磊
论文发表刊物:《电力设备》2018年第8期
论文发表时间:2018/8/13
标签:电力系统论文; 智能论文; 技术论文; 专家系统论文; 设备论文; 神经网络论文; 自动化控制论文; 《电力设备》2018年第8期论文;