风力发电系统中储能技术的应用论文_董思锋,董伟

风力发电系统中储能技术的应用论文_董思锋,董伟

国网宣城供电公司 国网芜湖县供电公司运维检修部

摘要:近几年我们国家的储能技术在不断的进步。一般情况下都是即发即用的方式,而新的技术能够有效的储存电能,解决传统方式下带来的很多弊端。近几年经济发展迅速,越来越多的行业都开始应用储能技术,尤其是在风力发电这一方面。在逐渐发展的过程中形成了智能电网,供电质量得到了提高。所以说,我们要根据不同的电力生产结构、不同的电力规划应用不同的储能技术,这样才能最大程度的发挥优势,实现智能电网的经济效益。

关键词:储能技术;风力发电;系统

随着我国对环境的保护不断重视,国家对新能源的研究投入也越来越大,并且提出了新能源振兴计划,其中风力发电因其污染小、可再生性强等特点尤其被大家关注。风力发电涉及到多方面的专业技术,要将储能技术引入到风力发电系统中,以此来更好的提高电能的质量。当前风力发电已经获得了一些应用,并且正朝着提高风电场输出功率的方向发展,预计在 2020 年左右,风力发电将会在我国总体发电容量中占有较大的份额。

1.1飞轮储能系统

飞轮储能的主要原理是利用电动机带动飞轮高速旋转,将电能转化成动能储存起来,在需要的时候再用飞轮带动发电机发电的储能方式。目前通过超导磁悬浮技术能够有效降低损耗,采用复合材料能够提高储能密度,降低系统体积和重量。飞轮储能系统中需要使用到许多性能优秀的材料技术以及电力电子变流技术,在实际应用中能量转化过程有所消耗,最终使得整个飞轮储能系统的转化效率一般在90%左右。这种储能系统具有无污染、充放电次数无限以及维修便利的优势,已经得到了很多应用。在后来的研究中发现,在飞轮储能系统中使用积木式组合之后,能够使得该储能系统的储能效率更高,输出的电能持续时间更长。在实际应用中,飞轮储能系统一般都应用在一些UPS和EPS中,能够发挥重要的作用。

1.2超导储能系统

超导储能系统与飞轮储能系统存在一些区别,在工作过程中是将电能首先转变成磁场能量进行存储,等需要使用的时候再转换为电能。超导储能是比较先进的技术,能够实现对能量的长期存储,并且损耗更小,使得对能量的利用效率很高。在将磁场能量转换为电能时,能量转换的速度非常快,相比于飞轮储能系统,超导储能系统能够将能量转换效率提升至96%以上。由于超导具有很好的动态性,响应时间短等优点,超导储能系统的技术运用十分广泛,主要运用于输配电网支撑、调节功率、提高系统稳定性等方面。在上世纪九十年代,关于超导储能技术方面的研究就已经比较成熟,能够比较好地运用在风力发电系统中,但是如何进一步提高超导的工作转换效率仍然是学界需要攻克的问题。

1.3蓄电池储能技术

蓄电池储能技术是最早在储能方面得到应用的,已经在生活中的很多方面得到了实际应用。在经过几代科学家的努力研究之后,蓄电池的容量逐渐扩大,储存容量不断得到提高,逐渐成为生活中不可或缺的部分。在现阶段,一般的铅酸蓄电池容量为20MW,是最开始蓄电池的近百倍,铅酸电池在风力发电系统中比较常见,这与铅酸电池的成本低以及可靠性高密不可分,并且对于环境的要求不是很严格。但是也存在一些缺陷,比如说当达到使用寿命之后很难进行无害化处理,造成对环境的影响。镍氢电池已经在2008年北京奥运会时得到了应用,北京地区的混合电动车都是使用镍氢蓄电池作为移动电源。但是镍氢电池的能量密度与其实际使用环境有关,当放电电流比较小时,其能量密度能够超过80kWh/kg,但是当放电电流比较大时,能量密度降低到40kWh/kg。对于锂离子电池,由于其生产工艺比较复杂,并且受环境影响比较严重,因此也就造成锂离子电池无法胜任实际风力发电中的需求,很难进行应用。最后就是全钒液流电池,在应用时涉及到电解液和汞之间的相互作用,在电极表面发生氧化还原反应,以此来实现对电池的充放电过程。目前全钒液流电池已经成为研究的主流,我国国家科学院大连化学物理研究所已经掌握了比较领先的技术。

1.4超级电容器储能技术

该技术能够提供更大的脉冲功率。

期刊文章分类查询,尽在期刊图书馆在对该电容器进行充电时,在电极表面的离子不断的吸引异性的离子,最终因为吸引力的作用而依附在电极的表面,也就形成了双电层电容。一般超级电容器储能技术都用在电力系统中电能质量高峰值功率场合中,一旦出现负载过大导致电压跌落比较严重时,就能够立即放电,提高电压,使得供电更加稳定。超级电容器储能技术的优点有很多,例如:可以产生较大并且稳定的电流、充电放电的时间比较短,并且多次重复循环的充电放电不会让电容器有损害。但是目前由于我国这方面的研究起步较晚,我国在这方面的技术比较落后,相对于像美国、日本、韩国、欧洲等掌握核心开发技术的国家,我国在这方面的研究仍有很长的路要走。如果在风力发电系统中使用超级电容器储能技术,会让风电电能的质量更高,稳定性更强。

1.5其他储能形式

在电力系统的实际应用中,还有抽水储能、氢燃料电池储能以及压缩空气储能等这些方式。一般来说,抽水储能装置能够在调峰中发挥重大作用。但是这种技术由于需要建立抽水储能电站,由于对环境的要求比较高,导致该技术在很多地区无法得到应用。氢燃料电池需要实现化学能和电能之间的转换,当氢气燃烧时,就需要将燃烧放出的能量转换为电能。但是目前氢气的价格比较昂贵,并且在运输过程中条件相对苛刻,稍有不慎就有可能出现爆炸。要想更好的使用氢燃料电池,就必须要解决好运输的问题。在风力发电中,也可以将发电场作为氢气制造基地,这样就能够为一些以氢气为原料的汽车提供能源。但是目前由于技术不成熟和成本比较高的原因限制了它的发展。压缩空气储能应用在调峰过程中,这种技术消耗的燃气比较少,具备节能的特性。当前大容量和复合化发电不断发展,可以预见的是关于压缩空气储能技术将会持续成为研究热点。

1.6储能技术比较

在选用何种储能技术进行时,需要考虑多种因素,其中包括容量大小、功率、储存期限、转换参数等,只有将多方面的因素考虑进去,才能结合实际情况选择最合适的一种。

2 储能技术在风力发电中的应用前景分析

在经过技术积累之后,已经有很多储能技术在电力系统中得到了实际应用。在电网调峰中,一般会使用到抽水储能和压缩空气储能。但是在对电能质量进行保护时,使用电磁储能和飞轮储能比较合适。但是还是有很多储能技术无法得到应用,很大程度上都是因为成本的限制,并且还存在能量转换效率比较低的缺陷。在风力发电不断成为研究热点的背景下,各种储能技术的应用前景更加可观,因此就需要在未来的工作中不断加大对储能技术的研究,尽量减小成本,提高能量转换效率,这样才能够使得储能技术在风力发电中的应用更加广泛。目前高速飞轮和超级电容器这些技术已经能够使得风电场的输出电能功率更加平滑。

结束语:

中国风电行业发展迅猛,同时也改变了世界风电格局,成为全球风电产业新的“风向标”。储能技术在风力发电系统中的应用具有广阔的前景。因此我国需要在今后加强对储能技术的研究力度,掌握自主知识产权,这样才能够实现对储能技术的广泛使用。政府也应当制定相应的政策支持,鼓励电力企业对储能技术进行研究,努力在混合式储能技术研究中占据优势地位,为我国电力系统安全高效运行提供新的技术支持。

参考文献:

[1]丛晶,宋坤,鲁海威,等.新能源电力系统中的储能技术研究综述[J].电工电能新技术,2014,33(03):53-59.

[2]程道平.智能电网中储能技术及其容量合理配置分析[J].供用电,2012,29(05):1-7.

[3]杨苹,马艺玮.储能技术在风力发电中的应用[J].系统科学与数学,2012,32(04):410-417.[4]李艳.浅析超导储能系统的研究进展[J].工业技术,2001.

[5]王成亮.飞轮储能在风力发电系统中的应用[J].江苏电机工程,2009.

[6]聂晶鑫.风力发电系统中储能技术的研究[D].西南交通大学,2011.

论文作者:董思锋,董伟

论文发表刊物:《基层建设》2018年第36期

论文发表时间:2019/2/18

标签:;  ;  ;  ;  ;  ;  ;  ;  

风力发电系统中储能技术的应用论文_董思锋,董伟
下载Doc文档

猜你喜欢