风力发电机组性能分析的模糊综合评判方法论文_吴吉军

风力发电机组性能分析的模糊综合评判方法论文_吴吉军

(甘肃龙源风力发电有限公司 甘肃兰州 735200)

摘要:针对目前风力发电机组性能分析评价研究一般仅局限于某一方面,不能全面反应发电机组系统性能问题,本文利用模糊数学理论,探讨了从技术经济、功能设置、可靠性及维修性四个方面来综合评判风力发电机组系统性能的方法和过程。文章首先简述了风力发电机运行特征,然后分析了风力发电系统的现代控制技术,最后重点探讨了模糊控制在风力发电机组控制中的应用设计。

关键词:风力;发电机组;综合防雷

一、前言

随着经济的发展,对新能源—风力资源的开发利用,越来越受到社会的重视,风机发电机组性能是一个综合性的工程,直接关系到风机在雷雨天气时能否正常工作,并且确保风机内的各种设备不受损害。

二 、风力发电机运行特征

风能是当今典型的可再生能源之一,是目前主要的石化能源代替品。近几年,随着我国风能利用能力的提升和相关风能设备的成熟,国内各地风力发电厂不断涌现,风电机组的规模也在不断扩大。面对日益增加的风力发电机组规模和数量,各种故障的发生可能性也随之增加,使得风电场发电机组的维修费用也在不断上升。经有关数据统计得出,不少风力发电厂的发电机组维护费用已经达到总成本的五分之一以上。因此为了更好的确保风力发电机组的稳定、安全、经济运行,对风力发电机运行特征进行研究势在必行。

1、 风电场的生产特征

当前我国大部分地区的风电场都处于盛行风地带,且这些地区每年约有半年以上的盛行风。这些地区的风力发电总量占当地电能总量的四分之三以上,甚至在无风时期都不愁电能供应问题。就风电场的生产经营而言,它在正式投入运行自怀中主要的运营成本包含了设备的折旧费、人工成本、银行利息、检修费用等。其中以检修费用最为突出,但也是最容易控制的一项。

2、风力发电机组故障特征

对于一个风力发电厂的电力机组而言,任何一种机组每年都会发生不少于20种常见故障,这些故障有70%以上都是因为产品质量而造成的。通常来说,风力发电机组内部故障不会对从属设备构成威胁,且这种故障问题的存在对整个发电机组的安全威胁并不大,因此只有在负荷率非常低的情况下方可进行检修,甚至不少机组生产商更是明文规定只有在设备停止运行的条件下方可对这类故障进行检修。因此,风力发电机组的故障大多属于内部构件故障运行状态恶化造成的,尤其是传动系统的故障更容易恶化和扩大。

三、风力发电系统的现代控制技术

1、滑模变结构控制

风电机组属于非线性系统,在实际使用过程中复杂多变,也容易受到风向、阵风或负载等变化的影响,所以也不能建立一个完善的数学模型对其进行控制。使用滑模变结构进行控制,将其当作一种间断性的开关。在设定系统的匹配条件后,就只能做定向的滑模运动,不受系统参数变化扰动、高速响应、鲁棒性高、设计轻盈、方便实现等众多优点,确保在参数不稳定时仍可以实现系统的稳定。符合了风力系统最大功率的设计要求,促进了风力发电机组的良好控制。

滑模变结构控制能够较好地抑制外加的干扰对双向反馈变速稳频型风力发电机组的不利作用,保证了控制系统的鲁棒性,唯一的缺点就是系统的抖振现象。最近有学者提到可以使用高阶滑模变控制方法,就是在高阶微分上使用不连续的控制量,延续了传统滑模的优势,还能较好地消除系统的抖振,使得输出功率维持在稳定状态。

期刊文章分类查询,尽在期刊图书馆

2、最优控制

风力发电机组的实际运行处在风速多变、干扰多、非线性的恶劣条件下,所以用数学模型来做不到对系统的精确控制,而利用线性模型设计的最优系统来进行控制,可以查找附近的工作点,并借助反馈系统完成大范围的精确解耦线性化,进一步保证风能、风力的最大搜集与控制,这就是风力发电机组中所谓的最优控制。该系统可以很好地处理有功、无功率输出、电功率变化小等之间的相互矛盾,还能较好地抑制因线路故障导致的电压波动。

3、模糊控制

模糊控制属于高级控制策略,它用到了语言规则、模糊推理两种方法,对被控制对象不需要很精确的数学模型,对非线性因素也不敏感,鲁棒性非常高。模糊控制是一种具有代表性的智能控制方法,在增强风能利用率、进行最大功率跟踪和变速稳频等方面显示出了巨大的作用。

典型的例子如:当将其使用于变桨距并网型风力发电机组中时,有效调节了控制系统的动态性能,还调整了风轮的桨距角、风力机转速和叶尖速比等,保证了风力发电机组功率和频率的稳定输出。与以往使用的PID控制器相比,抖振现象大大减少,系统的效率与质量明显得到提高。

依靠TS模糊模型系统,将局部的非线性功能用于风力混合动力发电系统中,再使用语言规将其划分为低级系统。配合最合适的分割时间序列,再使用线性二次调节系统进一步提高控制。该方法比过去的控制方式更能抵制外界的扰动,可以较好地适应风速与负载实时变化的恶劣条件。

将最优的模糊控制逻辑使用到双馈异步风力发电机组中,如果发动机转速低于预设的转速,此时依靠整流器和逆变器可以有效调节发电机的转速,尽量保证转速与风速的变化同步,最大程度提高风能利用率;如果发动机转速高于预设的转速,此时通过模糊控制器来调节桨距角,不搜集多余的风能,减少风能捕获率。

4、人工神经网络控制

人工神经网络控制是一种智能控制技术。神经网络理论综合了人类和生物的适应性、学习和判断能力等,所以该理论的自适应与自组织性比较高,可以监视和察觉风力快速变化的不确定性,也促进了风力发电机组的智能化水平大为提高。

四、模糊控制在风力发电机组控制中的应用设计

模糊控制系统是以模糊集合化、模糊语言变量及模糊推理为基础的一种计算机数学控制系统。从线性控制系统和非线性控制系统的角度分类,模糊控制系统是一种非线性控制系统;从控制器的智能性看,模糊控制属于智能控制的范畴,而且它已经成为目前实现智能控制的一种重要而有效的形式。因此,当系统数学模型未知或不确定时,特别是对于风力发电机组控制系统――非线性、多变量系统,模糊控制能达到令人满意的效果。模糊控制系统框图如2所示。

模糊控制系统一般可分为五个组成部分。

1、模糊控制器。它是各类模糊控制系统的核心部分。由于被控对象的不同,以及对系统静态、动态特性的要求和所应用的控制规则各异,可以构成各类型的控制器。在模糊控制理论中,采用基于模糊控制的知识表示和规则推理的语言型“模糊控制器”,这也是模糊控制系统区别与其他控制系统的特点所在。模糊控制器的主要功能有三个:模糊化处理,模糊推理(决策),非模糊化处理(精确化处理)。

2、输入输出接口。模糊控制器通过输入---输出接口从被控对象获得数字信号量,并将模糊控制器决策的输出数字信号经过数模转换,转变为模拟信号,然后送给被控对象。在I/0接口装置中,除了A/D、D/A转换外,还包括必要的电平转换。

3、执行机构。包括各种交、直流电动机,步进电动机等。

4、对象。被控对象可以是一种设备或装置以及他们的群体,也可以是一个生产的、自然的、社会的、生物的或其他各种对象或过程。对于那些难以建立精确数学模型的复杂对象,更适宜采用模糊控制。

5、检测装置。传感器是较常用的检测装置,传感器是将被控对象或各种过程的被控制量转化为电信号(模拟或数字)的一类装置。被控量往往是非电量,如速度、加速度、压力等。传感器在模糊控制系统中占有十分重要的地位,它的精度往往直接影响整个模糊控制系统的精度。因此,在选择传感器时,应十分注意选择精度高且稳定性好的传感器。

五、结束语

总之,随着能源的不断消耗和人们环保意识的不断提高,风力发电将会起到更加重要的作用,而风力发电机组是风力场发电的核心设备,因此,技术人员应,进一步研发出更有效、更合理的风力发电机组检修策略,从而保障了风力发电机组的运行安全。

参考文献

[1]辛海升,田德,陈松利,孙云峰.小型风力发电机噪声产生机理的分析[J].内蒙古农业大学学报,2013

[2]陈家伟,陈杰,龚春英.变速风力发电机组恒带宽最大功率跟踪控制策略[J].中国电机工程学报,2012

论文作者:吴吉军

论文发表刊物:《电力设备》2015年第10期供稿

论文发表时间:2016/4/22

标签:;  ;  ;  ;  ;  ;  ;  ;  

风力发电机组性能分析的模糊综合评判方法论文_吴吉军
下载Doc文档

猜你喜欢